Black & White 2

New Miracles:

Adding Custom Miracles

-1 Created By: Bill

Qg Date: February 2 2020

Changes

Date

Initial Release

February 2 2020

Table of Contents

INEEOMUCTION. ...ttt et et e et e e bt e et e e ate e steenbeeseesaseeseeenbeeseesnseenseeenseeannseeeannees
Editing the TemPIAte........cooviiiiie ettt et e et e e et eeeaaeeetaeesnbaeessssaaeeeeesnssseeeaeannes
Create Symbolic Bubble
Create Miracle in Hand
Calculate Mana
L7 A 01 | S PUUPUPPRN
CAST TIIOW ...ttt ettt ettt et ettt et estt e et e e e saeeabeeeaeeenbeessseenseeasseenseessaenseesnsseeeansseeeansseennns
Miracle Integration
COMSLANTS.eeeiiie ettt ettt ettt ettt e st e ettt e ettt e eaab e e ettt e eabeeesabeeesabee e abeesanseesasteesnsbeesnnsbaeeeeannnnnneeeean
Communication Scripts

II

New Miracles: Custom Miracle Creation 1/6

Introduction

One of the requirements laid out for the New Miracle project was to design it in such a way as to allow
others to easily add their own custom miracles. The Totem would act as intermediary between the
player and the miracles. It detects when a miracle is clicked, how the player uses the miracle,
calculating power for the miracles, moving the miracles as towns migrate.

This document describes the process of how to create a new miracle and add it to the project. What
needs to be edited in the Template file, adding in new constants, and editing the communication scripts.
However coding a new miracle’s effects when activated will not be covered.

Editing the Template

In the package should exist a file called NMs TEMPLATE.txt, this file is the miracle template. It
possess the skeleton of a miracle. To create a new miracle starting with this template it is recommended
that you make a copy of this template and rename it. It is best to keep the standard prefix for the file
“NMs_" followed by the name of the miracle. For example, “NMs_Custom.txt”.

The first 7 lines is the header. It would be best if the “Purpose” was updated to provide a brief
description of what your miracle will do.

The next step is to update the variable names, constants, and script names contained within the file.
You’ll notice the constant NMsTEMP MAXACTIVE, the variables like NMsTemp Count and the script
names like NMsTemp CastPour. They all contain a variation of the word “temp” after the prefix
“NMs”. While “NMs” is the over all prefix for the entire project, a short form of the miracle is tacked
on. This is similar to all the other miracles provided in the package. The prefixes for the other miracles
are: wheat, NMsWheat _; forest, NMsFrst_; ore, NMsOre _; lava, NMsLava_ etc...

The word you tack onto the project prefix isn’t important, what is, is that it’s constant throughout the
file. The best way to update all the names is by doing a search and replace. Not all editors provide a
feature like this if yours does not I’d recommend Notepad++ or Geany.

Notice that the constant’s prefix is all in caps, this isn’t entirely necessary, however it would be more
consistent with everything else.

Now that all the naming is customized to your miracle, it is time to begin editing the scripts.

Create Symbolic Bubble
The first script of the file is responsible for creating the bubble at the Totem. The script takes the
following parameters:
* 1dx — The index the miracle is to be store in the array NMs Miracles.
* xPos — The x co-ordinate of the miracle.
* yPos —the y co-ordinate relative to ground height. As you’ll notice the ground height is
calculated and added onto this value passed in.
* 7Pos — the z co-ordinate of the miracle.
t idx — The index of the Totem the miracle is being added to.

1/6

New Miracles: Custom Miracle Creation 2/6

The variable NMs Miracles is mentioned throughout this entire script. The variable is a 2 dimensional
array which is used to keep track of the miracles. The structure of the array is important to understand
as it limits what you can do with your symbolic bubble design. The first index is the id of a miracle, the
second index references objects, visual, or other important information about the miracle.

1. Symbol — This is the object contained within the bubble, for example wheat uses the hay bale. It
is important that this object is large, as the Totem looks for when the player clicks the symbol to
begin the activation process for this miracle.

Type — What type of miracle this is, which we will get to later when discussing constants.
Totem — Id of the Totem this miracle is being added to.

Object 1 — The first visual effect.

Object 2 — The second visual effect.

Visible — 1 = true, 0 = false.

Mana — Stores how much mana is required to cast the miracle.

NNk wbD

The symbol is best kept as a hay bale then use the override mesh command to swap it to another object.
As see in the following code:

NMs_Miracles[calldx + NMs MIRSYMBOL] = create with angle 0 and scale 0.25
SCRIPT _OBJECT _TYPE _FEATURE FEATURE INFO AZTC SUNTEMPLE at {xPos,yPos,zPos}

override mesh for NMs_Miracles[calldx + NMs MIRSYMBOL] with "..\models\m_tree oak"
SCRIPT OBJECT PROPERTY TYPE YPOS of NMs Miracles[calldx + NMs MIRSYMBOL] = yPos

All the default miracles that come in the package use the Aztec Sun Temple, then override with another
model. In the above case it’s an oak tree. The mesh of an object can be overridden with any bwm file
located in Black & White 2\Data\Art\.

The reasoning behind this method is that the Aztec Sun Temple allows it’s y co-ordinate to be edited.
Other objects won’t accept a y value and fall to the ground.

In the structure of the miracle array, notice how there are only two spots for visual effects. This means
you are limited to only two visual effects for your symbolic bubble. All the visual effect constants can
be found in the file VisualEffectTypeEnum.h.

The forest miracle uses VISUAL MIRACLE TORNODO_SEED and VISUAL EFFECT HAND for
it’s look. When picking visuals the first one should be a seed effect because it provides the bubble look.

Following the visual effect are the property edits to the visuals. Here you may do whatever you wish to
the visual effects, like change their scale, colour, strength, speed, etc...

Create Miracle in Hand

The second script is responsible for creating a representation of the miracle in the player’s hand. The
edits needed for this script are simple, you need only to replicate the look of the bubble here. However
the first visual, generally the bubble, may need to be replaced with a visual ending with IN. HAND.

2/6

New Miracles: Custom Miracle Creation 3/6

Generally the object in hand uses the mobile object, hay bale. Even though its mesh is overridden most
of the time it must be a mobile object unlike the symbolic bubble which is a feature.

Calculate Mana
This script is responsible for calculating the required mana to cast the miracle. It is run periodically by
the Totem scripts.

Here you need to add in your formula for how much mana your miracle requires. The power level of
the Totem is passed in as the variable pwr.

Cast Pour

Now we get to the interesting parts. These next two scripts are where the real meat of your miracle is
done. The first of which is the pouring script. Here you must program what happens when the player is
holding down the action button. Now the template provides the basics of what this script needs to do.

Some basic setup is done, then there is the power calculation area. Here is where, using the pwr
parameter, the overall effect is calculated. After that there is some more initialization, then we come to
the main loop.

The main loop contains all the code for keeping the miracle in the player’s hand, checking for
cancellation, making sure the action button is being held down, and that the player’s hand is still in his
influence.

Generally pouring allows the player to spread the effect of the miracle wherever he can reach rather
than throwing it, which results in a single effect at the contact point. For this reason a timer was coded
into the loop, where each iteration of the miracle’s effect occurs when the timer hits 0. The amount of
time is under your control, the default is 0.3s.

The variable amt is used to track how much of the miracle’s overall effect has been expelled. It is
incremented by the variable ¢ PerTick every iteration. The loop finally ends when either the cancel
action is performed or amt becomes larger or equal to ¢ Amount.

Once the loop is over any visuals or objects that need to be delete must be done.

Cast Throw
Similar to the pour script the first chunk of this script is dedicated to power calculations to determine
the extent of the miracle’s effect.

After power calculations the script waits for the miracle to hit something, or for a 60 second timer to
run out. The timer is there just in case something gets messed up and the miracle doesn’t end up hitting
anything for whatever reason. It would bad for the script to remain at the wait until command forever

taking up processing time.

You as the programmer must write the effect of the miracle in the if statement at the bottom.

3/6

New Miracles: Custom Miracle Creation 4/6

Miracle Integration

When your custom miracle is ready Totem and Global files need updating, so that those scripts are
aware of your miracle object. There are two steps (1) add and update the needed constants, and (2)
editing the communication scripts.

The custom miracle file must also be added to the challenge file.

Constants

The first constant, located in NMs_Globals.txt, that requires updating is NMs MIRACLETYPES. By
default in the package the value is set to 6 which is equal to the number of miracles provided. Since
more miracles are being added to the system the value of this constant must be incremented.

NMs MIRACLETYPES is used for setting up a 2D array located in NMs_Totem.txt. Thus it is necessary
to update the number of elements in that array to make room for our new miracle. The array in question
is:

global NMs_TotemMiracle[]NMs TOTEMDEF2]
This array counts the number of each miracle belonging to the Totems. The number of array elements is
defined by the constant NMs TOTEMDEF2 which is initialized on line 49. The formula for how many
elements are required for this constant is:

NMs_TOTEMDEF2=NMs NUMBERTOTEM XNMs MIRACLETYPES

Next, a new constant needs to be added in for your miracle. In NMs_Globals.txt there is a series of
constants for the different miracle types; they can be found under the comment *“//Miracle Types”
around line 31. Here you need to add a new constant for your miracle type like this example:

//Miracle Types

define NMs NONE =0
define NMs_ WHEAT =1
define NMs_ ANIMALS =2

define NMs FOREST =
define NMs_ORE =
define NMs LIGHT =
define NMs LAVA =
define NMs CUSTOM =7

Each time a new miracle is added on its value must be equal to the previous miracle’s value plus 1. For
example with the example above, if [were to add another miracle it’s value would be 8.

Communication Scripts

In NMs_Totem.txt there is a series of scripts referred to as “communication scripts.” These scripts allow
the Totem control scripts to call required scripts that belong to the miracles. Thus it is necessary to add
in the needed code to these communication scripts, so that the Totem control scripts can access your
miracle. Don’t worry the code is simple.

4/6

New Miracles: Custom Miracle Creation 5/6

—» \Wheat

—» Forest

—> Ore

Totem Communication
Control Scripts Scripts

—» Animals

—» Lights

o Lava

Hllustration 1: Block diagram of internal script calls

All the communication script have the same structure. They take the needed information, and using an
if statement, it runs the correct miracle script. For example the first communication script is
NMs_CallCreateFunction. Each if statement has a condition which checks the miracle type, then it runs
the script and increments that miracle’s internal counter.
if(m_type == NMs_WHEAT)
run script NMsWheat_createSymbolicBubble(idx,xPos,yPos,zPos,t idx)
NMsWheat Count++
Thus all that needs to be done to integrate a new miracle is an additional elsif to check for the new
miracle. This is the code needed, you’ll have to replace the bold parts.
elsif(m_type == <Miracle Constant>)
run script <Miracle create symbolic bubble script>(idx,xPos,yPos,zPos,t idx)
<Miracle internal counter>++

<Miracle Constant> refers to the constant created in the previous step, for example, NMs CUSTOM.
<Miracle create symbolic bubble script> is the first script of the miracle file as described in the first

section “Editing the Template.”

<Miracle internal counter> was created when doing the search and replace when editing the template
for the miracle file. It should be something like NMs<Prefix>_ Count.

This is the process for all the communication scripts. Below, all the scripts are listed with the basic elsif
statement needed to integrate the new miracle.

NMs_MoveMiracleFunction
elsif(m_type == <Miracle Constant>)

5/6

New Miracles: Custom Miracle Creation 6/6

run script <Miracle create symbolic bubble script>(m_idx,xPos,yPos,zPos,t idx)

NMs CallHandCreateFunction
elsif(m_type == <Miracle Constant>)
run script <Miracle create in hand representation>
NMs_ HandIdxResult = <NMs<Miracle Prefix>_ HandResult>

NMs_CallHandDeleteFunction
elsif(m_type == <Miracle Constant>)
run script <Miracle delete in hand representation>(NMs_ HandldxResult)

NMs_CallPourFunction
elsif(m_type == <Miracle Constant>)
set <NMs<Miracle Prefix> Hand>[NMs_ HandldxResult] in player 0 hand
run script <Miracle cast pour script>(pwr,NMs HandIdxResult)

NMs_CallThrowFunction
elsif(m_type == <Miracle Constant>)
run script <Miracle cast throw script>(pwr,NMs HandIdxResult)

NMs_ CallDeleteFunction
elsif(m_type == <Miracle Constant>)
run script <Miracle hide symbolic bubble>(m idx)

NMs CalManaFunction
elsif(m_type == <Miracle Constant>)

run script <Miracle calculate mana>(m_idx,NMs Totems[t ele + NMs TOTPWR])

At this point the integration is complete, the code should compile. Be sure it add some code to add your
new miracle to a Totem before you test it.

6/6

	Introduction
	Editing the Template
	Create Symbolic Bubble
	Create Miracle in Hand
	Calculate Mana
	Cast Pour
	Cast Throw

	Miracle Integration
	Constants
	Communication Scripts

